
www.OhioGeology.com

INTRODUCTION

The Ohio Department of Natural Resources, Division of Geological Survey (Ohio Geological Survey) has made extensive use of

ArcGIS customizations for various mapping projects. Custom applications have been developed for the distribution of geologic maps

and for the editing of the bedrock geology GIS dataset (McDonald and others, 2003; McDonald, 2006), creation of 3-D surfi cial-geology

maps (McDonald and others, 2008), project management applications for Ohio’s Lake Erie coastal erosion program (McDonald 2009;

McDonald and others, 2010), mapping of abandoned underground mines (Hoeffl er and Gordon, 2009), and the analysis of mine

subsidence claims (McDonald, 2012). All of these applications have greatly increased productivity of the mapping projects, during the

same time that resources have been either fl at or declining.

All of the preceding applications have been written either in Microsoft’s Visual Basic for Applications (VBA) or in Microsoft’s Visual

Basic 6.0 and using ArcObjects for ArcGIS. The VBA applications using ArcObjects allow the creation of customized code that resides

within the ArcMap or ArcCatalog environment. Applications developed in Visual Basic 6.0 using ArcObjects create either a compiled

fi le (.dll) or a stand along executable fi le (.exe). These applications were fi rst created starting with ArcGIS 8.2. The applications have

been successfully migrated from ArcGIS 8.3 to ArcGIS 9.0. Within the past few years, Microsoft has dropped support for VBA and has

introduced VB.NET as an applications development environment to replace VB 6.0. With the introduction of ArcGIS 10.0, the support

for VBA applications has been dropped and the support for VB 6.0 applications will be dropped in the next version. To replace VBA

customizations and VB 6.0 applications, ESRI has introduced two new applications development environments. The fi rst is ArcPy, a

Python-based scripting language that allows access to a subset of ArcObjects. The second applications development environment is the

new ArcGIS Add-In technology (Wunderlich, 2012). The Add-In technology is designed to replace the need to develop applications in VB

6.0 or create dlls within the .NET technologies. Since all of the existing DGs applications have user interfaces and new access to the full

range of ArcObjects, all of the existing Ohio Geological Survey applications are being converted to ArcGIS Add-Ins.

The Ohio Geological Survey uses two custom ArcMap applications critical to mapping and reporting of abandoned underground

mines (AUMs). One is a toolbar that facilitates georeferencing of paper mine maps that only have one or two points of reference (Hoeffl er

and Gordon, 2009). The other is a toolbar that streamlines the creation of digital geologic maps and additional documents for describing

the locations of abandoned underground mines that have collapsed, resulting in subsidence. Maps and documents may then be utilized

by geologists for writing claim reports requested by property owners whose property has been damaged by subsidence. These reports

are then evaluated by engineering fi rms or insurance companies for property remediation and insurance claims.

CONVERTING EXISTING APPLICATIONS TO ADD-INS

Beginning with ArcGIS 10, Add-Ins provide simplifi ed development and deployment of custom functionality to ArcGIS Desktop

applications. Add-Ins do not use Component Object Model (COM) categories and do not require registration. Instead, Add-Ins are

automatically discovered and incorporated into their target application at startup. Here is an example of a class module with COM and

the Add-In version without COM.

With COM:
Imports System.Runtime.InteropServices
Imports System.Drawing
Imports ESRI.ArcGIS.ADF.BaseClasses
Imports ESRI.ArcGIS.ADF.CATIDs
Imports ESRI.ArcGIS.Framework
Imports ESRI.ArcGIS.esriSystem
Imports ESRI.ArcGIS.ArcMapUI

<ComClass(frmScalingCommand.ClassId, frmScalingCommand.InterfaceId, frmScalingCommand.EventsId), _
 ProgId(“ODNR_GeoreferenceDotNET.frmScalingCommand”)> _
Public NotInheritable Class frmScalingCommand
 Inherits BaseCommand

#Region “COM GUIDs”
‘ These GUIDs provide the COM identity for this class

 ‘ and its COM interfaces. If you change them, existing
 ‘ clients will no longer be able to access the class.
 Public Const ClassId As String = “B32E9F36-84A8-4649-9E6A-0C4C8746DAA7”
 Public Const InterfaceId As String = “AC9A5719-8B6B-4B50-8A72-49736A1FAD30”
 Public Const EventsId As String = “189DEFB3-D6E1-4CC6-9BAA-1F33CF027FDA”
#End Region

#Region “COM Registration Function(s)”
 <ComRegisterFunction(), ComVisibleAttribute(False)> _
 Public Shared Sub RegisterFunction(ByVal registerType As Type)
 ‘ Required for ArcGIS Component Category Registrar support
 ArcGISCategoryRegistration(registerType)

 ‘Add any COM registration code after the ArcGISCategoryRegistration() call

 End Sub

 <ComUnregisterFunction(), ComVisibleAttribute(False)> _
 Public Shared Sub UnregisterFunction(ByVal registerType As Type)
 ‘ Required for ArcGIS Component Category Registrar support
 ArcGISCategoryUnregistration(registerType)

 ‘Add any COM unregistration code after the ArcGISCategoryUnregistration() call

 End Sub

#Region “ArcGIS Component Category Registrar generated code”
 Private Shared Sub ArcGISCategoryRegistration(ByVal registerType As Type)
 Dim regKey As String = String.Format(“HKEY_CLASSES_ROOT\CLSID\{{{0}}}”, registerType.GUID)
 MxCommands.Register(regKey)
 GxCommands.Register(regKey)
 SxCommands.Register(regKey)
 GMxCommands.Register(regKey)
 End Sub
 Private Shared Sub ArcGISCategoryUnregistration(ByVal registerType As Type)
 Dim regKey As String = String.Format(“HKEY_CLASSES_ROOT\CLSID\{{{0}}}”, registerType.GUID)
 MxCommands.Unregister(regKey)
 GxCommands.Unregister(regKey)
 SxCommands.Unregister(regKey)
 GMxCommands.Unregister(regKey)
 End Sub

#End Region
#End Region

 Public Shared m_application As IApplication
 Private m_dockableWindow As IDockableWindow
 Private m_pMxDoc As ESRI.ArcGIS.ArcMapUI.IMxDocument

 Public Shared m_mxApplication As ESRI.ArcGIS.ArcMapUI.IMxApplication

 Private Const DockableWindowGuid As String = “{9a26bf09-6875-4857-82a3-2fb3f25e5d37}”

 ‘ A creatable COM class must have a Public Sub New()
 ‘ with no parameters, otherwise, the class will not be
 ‘ registered in the COM registry and cannot be created
 ‘ via CreateObject.
 Public Sub New()
 MyBase.New()

 MyBase.m_category = “.NET Samples”
 MyBase.m_caption = “Scaling form”
 MyBase.m_message = “Scaling form”
 MyBase.m_toolTip = “Open Scaling form”
 MyBase.m_name = “Scalingform”

 Try
 Dim bitmapResourceName As String = Me.GetType().Name + “.bmp”
 MyBase.m_bitmap = New Bitmap(Me.GetType(), bitmapResourceName)
 Catch ex As Exception
 System.Diagnostics.Trace.WriteLine(ex.Message, “Invalid Bitmap”)
 End Try
 End Sub

 ‘’’ <summary>
 ‘’’ Occurs when this command is created
 ‘’’ </summary>
 ‘’’ <param name=”hook”>Instance of the application</param>
 Public Overrides Sub OnCreate(ByVal hook As Object)

 If Not (hook Is Nothing) Then
 If TypeOf (hook) Is IMxApplication Then
 m_mxApplication = CType(hook, IMxApplication)
 End If
 End If

 m_application = CType(m_mxApplication, ESRI.ArcGIS.Framework.IApplication)

 End Sub

 ‘’’ <summary>
 ‘’’ Toggle visiblity of dockable window and show the visible state by its checked property
 ‘’’ </summary>
 Public Overrides Sub OnClick()

 Dim frmScaling2 As New frmScaling
 frmScaling2.Show()

 End Sub
 Public Overrides ReadOnly Property Enabled As Boolean
 Get
 Dim SelectImage2 As New SelectImage
 Dim TextBoxValue2 As String = SelectImage.TextBoxValue

 If TextBoxValue2 = “Add/Select Image” Or TextBoxValue2 = “” Then
 MyBase.m_enabled = False
 Else
 MyBase.m_enabled = True
 End If
 Return MyBase.Enabled
 End Get
 End Property
 Public Overrides ReadOnly Property Checked() As Boolean
 Get
 Return (m_dockableWindow IsNot Nothing) AndAlso (m_dockableWindow.IsVisible())
 End Get
 End Property

End Class

Without COM:
Imports System.Runtime.InteropServices
Imports System.Drawing
Imports ESRI.ArcGIS.ADF.BaseClasses
Imports ESRI.ArcGIS.ADF.CATIDs
Imports ESRI.ArcGIS.Framework
Imports ESRI.ArcGIS.esriSystem
Imports ESRI.ArcGIS.ArcMapUI

Public Class frmScalingCommand
 Inherits ESRI.ArcGIS.Desktop.AddIns.Button

 Public Shared m_application As IApplication
 Private m_dockableWindow As IDockableWindow
 Private m_pMxDoc As ESRI.ArcGIS.ArcMapUI.IMxDocument
 Public Shared m_mxApplication As ESRI.ArcGIS.ArcMapUI.IMxApplication

 Public Sub New()

 m_mxApplication = My.ArcMap.ThisApplication
 m_application = My.ArcMap.Application
 End Sub

 Protected Overrides Sub OnClick()
 Dim frmScaling2 As New frmScaling
 frmScaling2.Show()
 End Sub

 Protected Overrides Sub OnUpdate()
 Dim SelectImage2 As New SelectImage
 Dim TextBoxValue2 As String = SelectImage.TextBoxValue

 If TextBoxValue2 = “Add/Select Image” Or TextBoxValue2 = “” Then
 Me.Enabled = False
 Else
 Me.Enabled = True
 End If
 End Sub
End Class

ArcGIS Desktop applications support a fi xed set of Add-In types. The following Add-In types are supported in the current release (fi g. 1):

• Buttons and tools

• ComboBox controls

• Menus (including root menus and context menus)

• Multi-Items

• Toolbars (including premier toolbars)

• Tool palettes

• Dockable windows

• Application extensions

• Editor extensions

During installation of the ArcObjects Software Development Kit for .NET, Add-In project templates are installed into Microsoft Visual

Studio for the following ArcGIS Desktop components: ArcCatalog, ArcMap, ArcScene, and ArcGlobe.

The fi rst step of converting code to an Add-In is to create a new project using one of the Visual Studio Add-In templates (fi g. 2). An

Extensible Markup Language (XML) fi le called Confi g.esriaddinx is automatically created by the Add-In Project wizard. This fi le declares and

describes the user interface components which control the functionality of the application. Users can add controls to the project using the

wizard or edit the Confi g.esriaddinx fi le manually (fi g. 3). The fi rst section of the fi le contains metadata for the Add-In, including its name,

ID, description, image, and version. The Commands tag declares and describes the controls for the application, in this case buttons and

tools. The class attribute is used to associate the active code portion with the declarative portion of the Visual Studio solution.

Control declarations are visible on the Customize dialog box. For example, an ArcMap button declaration appears as a regular

command item on ArcMap’s Customize dialog box. From here, the button can be dragged onto any toolbar or menu like a regular COM

command (fi g. 4).

CONVERTING TOOLBARS AND MENUS

Add-In toolbars and menus are purely declarative. Unlike buttons and tools, toolbars and menus do not have an active portion and

require no coding. Toolbar and Menu elements are the placeholders for all toolbars and menus in an Add-In and are defi ned under the

target application element. Each Toolbar element defi nes a unique toolbar. The Items subelement within the Toolbar element lists all the

toolbar constituents. Menus work exactly the same. Toolbars can host Button, Tool, Tool Palette, ComboBox, and Menu items. Menus can

host Buttons and other Menu items. Each item must specify a refID attribute to associate the actual control with the toolbar or menu.

The Toolbar tag groups the Add-In controls onto a toolbar (fi gs. 5 and 6).

The AUM applications were originally written within ArcMap using VBA. Then, the applications were converted to Visual Basic.NET (VB.

NET) at ArcGIS 9.x. However, applications can be migrated from VBA directly into Add-Ins. Forms used in applications that are being migrated

from VBA need to be reconstructed in Visual Studio. If code is being migrated from VB.NET, the forms can be brought into the Add-In project

by right clicking the solution name and choosing Add / Existing Item and navigating to the folder where the VB.Net forms reside (fi g. 7).

In the solution properties, the Debug / Start Action for the project must be set to “Start external program:” and the path to your

ArcMap.exe (which has changed at version 10) must be entered (fi g. 8). ArcMap document fi les that were created in ArcGIS 9.x can cause

problems in ArcGIS 10, such as randomly crashing ArcMap for no apparent reason. So, document fi les should be reconstructed from

scratch in ArcGIS 10 before debugging. When debugging, an untitled ArcMap document will open. Users open the document that has

been constructed for the project. Next, class modules are created for all the classes being migrated and the old code copied into them,

sans the COM code. Users will need to fi x any changes to assemblies at version 10. For example, ESRi.ArcGIS.ADF needs to be changed to

ESRi.ArcGIS.ADF.Local.

Once a project has been successfully built, an Add-In folder containing the project Add-In fi le (basically a Zip fi le) is created. The

Add-In can also be managed in the Add-In Manager (fi g. 9), which is available under the Customize menu in ArcMap. The Add-In fi le

can now be e-mailed or copied to a network drive. For end users to install the application, simply double click the fi le. No administrator

rights or registration are needed. The application will be available the next time ArcMap is started.

SUMMARY

The Ohio Geological Survey continues to extensively use ERSI customizations in the ArcGIS environment. The applications create a

tremendous amount of effi ciencies for geologic mapping and analysis of geologically induced hazards. With changes in the Microsoft

application development environment, there were subsequent changes in the ArcGIS environment that required migration of

applications from the VBA environment to the new ArcGIS Add-In technologies. The Ohio Geological Survey has successfully migrated

two applications that are of critical importance to the operation of the Division. These two applications allow the Ohio Geological Survey

to continue increasing the accuracy of the mapping of abandoned underground mines and to pull into one document all the known

geologic information for a mine subsidence claim.

ACKNOWLEDGMENTS

The ODNR Division of Geological Survey thanks the Ohio Mine Subsidence Insurance Underwriting Association (OMSIUA) for

providing funding to create the OMSIUA application and to upgrade both the AUM Georeferencing application and the OMSIUA

application to the new Add-In technology.

REFERENCES

Hoeffl er, Paul, and Gordon, Chris, 2009, Ohio underground mine map georeferencing project, in Digital Mapping Techniques ’09, Morgantown, W.Va.,

May 10–13, 2009, Proceedings: Ohio Department of Natural Resources, Division of Geological Survey poster presentation, last accessed May 15,

2012, at <http://www.dnr.state.oh.us/portals/10/pdf/Posters/DMT2009_Hoeffl er.pdf>.

McDonald, James, 2006, GIS data access and distribution using a GIS map application [abs.], in Abstracts with Programs, 2006 Annual Meeting of the

Geological Society of America, October, 22–25, 2006, Philadelphia, Pa.: Geological Society of America, v. 38, no. 7, p. 163, last accessed May 15, 2012,

at <http://gsa.confex.com/gsa/2006AM/fi nalprogram/abstract_113917.htm>.

McDonald, James, 2009, Project-management GIS applications for coastal-erosion mapping in Ohio, in Digital Mapping Techniques ’08—Workshop

Proceedings, Moscow, Idaho, May 18–21, 2008: U.S. Geological Survey Open-File Report 2009-1298, p. 177–184, last accessed May 15, 2012, at

<http://pubs.usgs.gov/of/2009/1298/pdf/usgs_of2009-1298_mcdonald.pdf>.

McDonald, James, 2012, Evaluating mine subsidence using a GIS software application, in Digital Mapping Techniques ’10—Workshop Proceedings,

Sacramento, Calif., May 16–18, 2010: U.S. Geological Survey Open-File Report, 25 p., last accessed May 15, 2012, at <http://ngmdb.usgs.gov/Info/

dmt/docs/DMT10_Draft_McDonald.pdf>.

McDonald, James, Harbulak, Paul, Mackey, S.D., 2010, New GIS tools for mapping Ohio’s Lake Erie coastal erosion areas, in Digital Mapping Techniques

’09—Workshop Proceedings, Morgantown, W.Va., May 10–13, 2009: U.S. Geological Survey Open-File Report 2010-1335, p. 195–205, last accessed

May 15, 2012, at <http://pubs.usgs.gov/of/2010/1335/pdf/usgs_of2010-1335_McDonald.pdf>.

McDonald, James, Pavey, R.R., Venteris, E.R., and Wells, J.G., 2008, GIS tools for 3D surfi cial mapping in Ohio, in Digital Mapping Techniques ’07—

Workshop Proceedings, Columbia, S.C., May 20–23, 2007: U.S. Geological Survey Open-File Report 2008-1385, p. 109–121, last accessed May 15, 2012,

at <http://pubs.usgs.gov/of/2008/1385/pdf/mcdonald.pdf>.

McDonald, James, Swinford, E.M., Wickstrom, L.H., Slucher, E.R., Powers, D.M., and Berg, T.M., 2003, Bedrock geology and bedrock topography GIS of

Ohio—New data and applications for public access, in Digital Mapping Techniques ’03—Workshop Proceedings, Millersville, Pa., June 1–4, 2003: U.S.

Geological Survey Open-File Report 03-471, p. 3–16, last accessed May 15, 2012, at <http://pubs.usgs.gov/of/2003/of03-471/pdf/mcdonald.pdf>.

Wunderlich, A.L., 2012, Automation in ArcGIS 10—Understanding changes in methods of customization and options for migration of legacy code, in

Digital Mapping Techniques ’10—Workshop Proceedings, Sacramento, Calif., May 16–18, 2010: U.S. Geological Survey Open-File Report, 14 p., last

accessed May 15, 2012, at <http://ngmdb.usgs.gov/Info/dmt/docs/DMT10_Draft_Wunderlich.pdf>.

ESRI.ArcGIS.Desktop.AddIns Class Diagram
ESRI ArcGIS Desktop
Copyright 2010 ESRI. All rights reserved.

Classes

Enumeration name
Enum

enumeration members

Enumerations

Abstract classes

Abstract classes are
shown using a dashed
outline.

Abstra ct cla ss name

Abstract Class

Class with nested types
Class

Nested Types

N ested class name
Class

Nested Types

If a class has
nested types,
they are shown
within the class
below any class
members.

K ey

Property shown as association

Properties shown as associations
are excluded from the Properties
listing shown inside the class.

Property name

Class name
Class

Properties

Property name { get; set; } : return type

M ethods

M ethod name(parameters) : return type

Events

Event name : EventHandler type

Interface name

Inherit ing class

Inherited class

Class

Inherited class
Class

Type inheritance

Inheritance is
shown by a
hollow arrow.
The inherited class
name is also
indicated within
the inheriting
class.

Delegate name
Delegate

Parameter name : type

Delegates

Interface name
Interface

Properties

Property name { get; set; } : return type

M ethods

M ethod name(parameters) : return type

Events

Event name : EventHandler type

Interfaces

Button

Abstract Class

Properties

Checked { get; set; } : bool

Enabled { get; set; } : bool

Hook { get; } : object

M ethods

~Button()

Button()

Dispose() : void

Dispose() : void

OnClick() : void

OnUpdate() : void

Docka bleW indow

Abstract Class

Properties

Hook { get; } : object

M ethods

~DockableWindow()

Dispose() : void

Dispose() : void

DockableWindow()

OnCreateChild() : IntPtr

Extension

Abstract Class

Properties

Hook { get; } : object

State { get; set; } : ExtensionState

M ethods

~Extension()

Dispose() : void

Dispose() : void

Extension()

OnGetState() : ExtensionState

OnLoad(Stream inStrm) : void

OnSave(Stream outStrm) : void

OnSetState(ExtensionState state) : bool

OnShutdown() : void

OnStartup() : void

Tool

Abstract Class

Properties

Cursor { set; } : Cursor

Enabled { get; set; } : bool

Hook { get; } : object

M ethods

~Tool()

Dispose() : void

Dispose() : void

OnActivate() : void

OnContextM enu(int x, int y) : bool

OnDeactivate() : bool

OnDoubleClick() : void

OnKeyDown(KeyEventArgs arg) : void

OnKeyUp(KeyEventArgs arg) : void

OnM ouseDown(M ouseEventArgs arg) : void

OnM ouseM ove(M ouseEventArgs arg) : void

OnM ouseUp(M ouseEventArgs arg) : void

OnRefresh(int hDC) : void

OnUpdate() : void

Tool()

Nested Types

K eyEventArgs

Class

Properties

Alt { get; } : bool

Control { get; } : bool

KeyCode { get; } : Keys

M odifierKeys { get; } : Keys

Shift { get; } : bool

M ouseEventArgs

MouseEventArgs

Class

Properties

Alt { get; } : bool

Control { get; } : bool

M odifierKeys { get; } : Keys

Shift { get; } : bool

Ex tensionState

Enum

Unavailable

Enabled

Disabled

ComboBox

Abstract Class

Properties

Enabled { get; set; } : bool

Hook { get; } : object

items { get; } : ReadOnlyCollection<Item>

Selected { get; } : int

Value { get; set; } : string

M ethods

~ComboBox()

Add(string str) : int

Add(string str, object tag) : int

Clear() : void

ComboBox()

Dispose() : void

Dispose() : void

GetItem(int cookie) : Item

OnEditChange(string editString) : void

OnEnter() : void

OnFocus(bool set) : void

OnSelChange(int cookie) : void

OnUpdate() : void

Remove(int cookie) : void

Select(int cookie) : void

Nested Types

Item

Class

Properties

Caption { get; } : string

Cookie { get; } : int

Tag { get; } : object

M ethods

Dispose() : void

Dispose() : void

MultiItem

Abstract Class

Properties

Hook { get; } : object

M ethods

~M ultiItem()

Dispose() : void

Dispose() : void

M ultiItem()

OnClick(Item item) : void

OnPopup(ItemCollection items) : void

Nested Types

Item

Class

Properties

BeginGroup { get; set; } : bool

Caption { get; set; } : string

Checked { get; set; } : bool

Enabled { get; set; } : bool

Image { get; set; } : Image

M essage { get; set; } : string

Tag { get; set; } : object

M ethods

~Item()

Dispose() : void

Dispose() : void

Item()

raise_OnClick(object value0, Ha…

Events

OnClick : EventHandler<Handle…

ItemCollection

List< Item>

Class

IDisposable IDisposable IDisposable IDisposable

IDisposable

IDisposable

IDisposable

IDisposable

FIGURE 2.—The New Project dialog showing the ArcMap Add-In templates.

FIGURE 8.—Setting the debug start action in project properties.

FIGURE 1.—Example class diagrams for the common ERSI Add-In classes.

FIGURE 3.—An XML confi guration fi le, Confi g.esriaddinx, in Microsoft Visual Studio.

FIGURE 4.—The ArcMap Customize dialog showing

Add-In commands.

FIGURE 7.—Adding an existing item to Visual Studio.

FIGURE 9.—The Add-In Manager dialog.

FIGURE 5.—The OMSIUA toolbar contains a combination of ESRI controls and

custom controls. The tools described from left to right include: (A) the native

ERSI Find tool; (B) the Select AUM Location tool, which loads all known geologic

maps and records into the ArcMap; (C) a tool to open the Underground Mine

Information database in MS-Access; (D) the Underground Mine Information

form, which allows the selected mine attribute information to be loaded into a

form for display; (E) the native ESRI Hyperlink tool; (F) the Export PDF tool; and

(G) a tool to reset and zoom to the entire state. See McDonald (2012) for further

explanation of the tools.

A B C D E F G

A B C D E F G JIH

FIGURE 6.—The AUM Georeferencing toolbar. The tools described from left to right include: (A) Open Image Registration form; (B) Select

an image to georeference; (C) Add Control Points; (D) Clear Graphics; (E) Open Scaling form; (F) Translate Image; (G) Open QA/QC form;

(H) Open Add Comment form; (I) Quarter-Quad Tool; and (J) ESRI Georeference Toolbar. See Hoeffl er and Gordon (2009) for further

explanation of the tools.

Migrating Abandoned Underground Mine Applications to ArcGIS Add-Ins Robert H. Hanover James McDonald Ohio Department of Natural Resources, Division of Geological Survey
robert.hanover@dnr.state.oh.us jim.mcdonald@dnr.state.oh.us 2045 Morse Rd., Bldg. C-1, Columbus, OH 43229-6693

